Ministry of Higher Education
Colleges of Applied Sciences
IT Department

Course: SFDV4001 - Object-Oriented Programming & User Interface
Lab: 3 - Class and Inheritance

1. Understanding a Class

Observe the code listing 1.1 that shows the class definition and implementation of
fraction.

Is Fraction a canonical class? Explain your answer.

Which parts of the code is about the instantiation of an object?

Which parts of the code do maintain the notion of encapsulation?

Explain the reason for using const as part of the method signature in
toDouble ().

Extend the program so that it can calculate the result of the multiplication of
fl and f2.

Code listing 1.1

#include <iostream>

#include <string>

using namespace std;

class Fraction {
private:

int numerator;
int denominator;

public:

};

int

Fraction(int n, int d) : numerator(n), denominator(d) {}
Fraction(const Fraction& other)
numerator(other.numerator), denominator(other.denominator) {}
Fraction& operator=(const Fraction& other) {
numerator = other.numerator;
denominator = other.denominator;
return *this;
}

double toDouble() const {return 1.0 * numerator / denominator;}

main() {

Fraction f1(1,5), f2(1,2);

cout << "\nfl: " << fl.toDouble() << endl;
cout << "\nf2: " << f2.toDouble() << endl;
cout << "\nfl*f2=";

return 0;

2. Virtual Function
Observe the code listing 2.1, and answer the following two questions.

* What is the benefit of using a virtual function?
« What will happen if the print method at Base class is not a virtual function?

Code listing 2.1

#include <iostream>
using namespace std;

class Base {
public:
virtual void print() { cout << "Base class" << endl;}

}i

class Derived : public Base {
public:
virtual void print() {cout << "Derived class" << endl;}

};

int main() {
Base b;
Derived d;
b.print();

d.print();

Base *bl = new Derived;
bl->print();

3. Abstract Function
Observe the code listing 3.1, and

* Solve and explain the compile error.
* What is the benefit of using an abstract method?

Code listing 3.1

#include <iostream>
using namespace std;

class Base {
public:
virtual void print() = 0;

};

class Derived : public Base {
public:
virtual void print() {cout << "Derived class" << endl;}

}i

int main() {
Base b;

Derived d;
d.print();

Base *bl = new Derived;
bl->print();

4. Parent's Constructor
Observe the code listing 4.1, and explain the difference between D d1(2) and D 427

Code listing 4.1

#include <iostream>
using namespace std;

class C {
public:
C() {cout << "C default\n";}
C(int num) {cout << "C(" << num << ")\n";}

b
class D : public C {
public:
D() {cout << "D default\n";}
D(int num): C(num) {cout << "D(" << num << ")\n";}
b
int main(int argc, char *argv[])
{
cout << "D dl(2);-----------mmme oo \n";
D d1(2);
cout << "D d2;--------mmmm e \n";
D d2;

	1. Understanding a Class
	2. Virtual Function
	3. Abstract Function
	Observe the code listing 3.1, and
	Solve and explain the compile error.
	What is the benefit of using an abstract method?
	Code listing 3.1
	4. Parent's Constructor

